Aarhus University Seal / Aarhus Universitets segl

Circular Bioeconomy (2020)

ECTS credits:

Course parameters:
Language: English
Level of course: PhD course
Time of year: Summer 2020, online course 22-26 June 2020
No. of contact hours/hours in total incl. preparation, assignment(s) or the like: 40 contact hours/140 hours in total (60 hours of reading materials (2 ECTS), 40 hours of lectures (1.5 ECTS) and 40 hours for the final written assignment (1.5 ECTS))
Capacity limits: max 30 participants

Objectives of the course:
The transition towards circular economy is considered as a key solution for sustainable development and the increasing need for utilization of the bio based waste streams can support significant potential and benefits for the society, the environment and economy. Circular bioeconomy uses biomass waste and residues as input into biorefinery for the production of high-value products, such as bio-fertilizers, bio-plastics and enzymes. The biorefinery output products can enter the economic systems providing alternatives for conventional fossil intensive products. Examples include: biogas, biodiesel, fertilizer, acids, enzymes, colorant, vegan leather and other. Waste biomass can be used in cascading production resulting in multiple outputs and industrial symbiosis. The integration of ecosystems services to circular bioeconomy support transition towards an environmentally sustainable low fossil carbon economy.

Learning outcomes and competences:
At the end of the course, the student should be able to:

  • Understand main term and definitions used in circular bioeconomy, including food waste definitions
  • Distinguish types of biomass and their use in biorefineries
  • Knowledge on circular bioeconomy businesses and companies
  • Understand the importance of marketing and circular economy business models (CEBM)
  • Identify the regulatory instruments governing bio-waste management in EU
  • Knowledge on ecosystem services and their integration into production systems
  • Knowledge on industrial symbiosis
  • Knowledge about the tools used for environmental evaluation
  • Evaluate the importance of substitution methodology used
  • Participant will be able to critically assess circular bioeconomy systems

Compulsory programme:
Active participation on lectures, final individual assignment

Course contents:

  • Day 1: Introduction to the course, types of biomass and examples of biorefineries from literature and industry
  • Day 2: Agriculture, food waste, and seaweed biorefineries and resources, social aspect and regulations of circular bioeconomy
  • Day 3: Trade, sustainability of resources, and external lectures
  • Day 4: 1 Decision support tools, MFA, LCA, Carbon footprint
  • Day 5: Ecosystem Services, Circular Economy Business Models, Industrial Symbiosis and final assignment


Name of lecturers:

Type of course/teaching methods:
Lectures, exercises, reading materials


  • Ayres, R.U., 1995. Life cycle analysis: A critique. Resour. Conserv. Recycl. 14, 199–223. doi.org/10.1016/0921-3449(95)00017-D
  • Brunner, P.H. and Rechberger, H. 2004. Practical Handbook of Material Flow Analysis. thecitywasteproject.files.wordpress.com/2013/03/practical_handbook-of-material-flow-analysis.pdf
  • Cadena, E., Rocca, F., Gutierrez, J., Carvalho, A. 2019. Social life cycle assessment methodology for evaluating production process design: Biorefinery case study. Journal of Cleaner Production, 238, 117718. doi.org/10.1016/j.jclepro.2019.117718
  • Chertow, M.R., 2007. “Uncovering” Industrial Symbiosis. J. Ind. Ecol. 11, 11–30. https://doi.org/10.1162/jiec.2007.1110
  • Domenech, T., Bahn-Walkowiak, B., 2019. Transition Towards a Resource Efficient Circular Economy in Europe: Policy Lessons From the EU and the Member States. Ecological Economics, 155, 7–19. https://doi.org/10.1016/j.ecolecon.2017.11.001
  • European Commission - Joint Research Centre - Institute for Environment and Sustainability: International Reference Life Cycle Data System (ILCD) Handbook - General guide for Life Cycle Assessment - Detailed guidance. First edition March 2010. EUR 24708 EN. Luxembourg. Publications Office of the European Union; 2010. eplca.jrc.ec.europa.eu/uploads/ILCD-Handbook-General-guide-for-LCA-DETAILED-GUIDANCE-12March2010-ISBN-fin-v1.0-EN.pdf
  • Guinee, J., Heijungs, R., Huppes, G., Zamagni, A., Masoni, P., Buonamici, R., Ekvall, T., Rydberg, T. 2011. Life cycle assessment: Past, present and future. Environmental Science and Technology, 45, 90-96. /doi.org/10.1021/es101316v
  • Hauschild, M. Z., & Huijbregts, M. A. J. (Eds.). (2015). Life Cycle Impact Assessment (1st ed., Vol. 3). Dordrecht: Springer. doi: doi.org/10.1007/978-94-017-9744-3
  • Kanemoto, K., Moran, D., Lenzen, M., Geschke, A. 2014. International trade undermines national emission reduction targets : New evidence from air pollution. Global Environmental Change, 24, pp. 52–59. doi.org/10.1016/j.gloenvcha.2013.09.008
  • Kitzes, J. 2013. An Introduction to Environmentally-Extended Input-Output Analysis. Resources, 2, 489-503. doi: 10.3390/resources2040489.
  • Krause-Jensen, D., & Duarte, C. M. (2016). Substantial role of macroalgae in marine carbon sequestration. Nature Geoscience, 9(10), 737. doi.org/10.1038/NGEO2790.
  • Lüdeke-Freund, F., Gold, S., Bocken, N.M.P. (2018). A Review and Typology of Circular Economy Business Model Patterns. Journal of Industrial Ecology. doi.org/10.1111/jiec.12763
  • Mirabella, N., Castellani, V., Sala, S., 2014. Current options for the valorization of food manufacturing waste: a review. J. Clean. Prod. 65, 28–41. https://doi.org/10.1016/J.JCLEPRO.2013.10.051
  • Österblom, H., Crona, B. I., Folke, C., Nyström, M., & Troell, M. 2017. Marine ecosystem science on an intertwined planet. Ecosystems, 20(1), 54-61. doi.org/10.1007/s10021-016-9998-6
  • Parfitt, J., Barthel, M., Macnaughton, S., 2010. Food waste within food supply chains: quantification and potential for change to 2050. Philosophical Trans. R. Soc. B, 365, 3065–3081. https://doi.org/10.1098/rstb.2010.0126
  • Peters, G. P. and Hertwich, E. G. 2008. Post-Kyoto greenhouse gas inventories: Production versus consumption. Climatic Change, 86 (1–2), pp. 51–66. doi: 10.1007/s10584-007-9280-1.
  • Pizzol, M, C.R. Smart, J & Thomsen, M 2014. External costs of cadmium emissions to soil: a drawback of phosphorus fertilizers. Journal of Cleaner Production, 84, 475-483., 10.1016/j.jclepro.2013.12.080.
  • Ramcilovic-Suominen, S., Pülzl, H., 2018. Sustainable development – A ‘selling point’ of the emerging EU bioeconomy policy framework? Journal of Cleaner Production, 172, 4170–4180. doi.org/10.1016/j.jclepro.2016.12.157
  • Rockström, J., W. Steffen, K. Noone, Å. Persson, F. S. Chapin, III, E. Lambin, T. M. Lenton, M. Scheffer, C. Folke, H. Schellnhuber, B. Nykvist, C. A. De Wit, T. Hughes, S. van der Leeuw, H. Rodhe, S. Sörlin, P. K. Snyder, R. Costanza, U. Svedin, M. Falkenmark, L. Karlberg, R. W. Corell, V. J. Fabry, J. Hansen, B. Walker, D. Liverman, K. Richardson, P. Crutzen, and J. Foley. 2009. Planetary boundaries:exploring the safe operating space for humanity. Ecology and Society 14(2): 32. [online] URL: http://www.ecologyandsociety.org/vol14/iss2/art32/
  • Seghetta, M., Marchi, M., Thomsen, M., Bjerre, A-B., Bastianoni, S. 2016. Modelling biogenic carbon flow in a macroalgal biorefinery system. Algal Research, 18, 144-155. doi.org/10.1016/j.algal.2016.05.030
  • Seghetta, M., Hou, X., Bastianoni, S., Bjerre, A. B.,  Thomsen, M. 2016. Life cycle assessment of macroalgal biorefinery for the production of ethanol, proteins and fertilizers–A step towards a regenerative bioeconomy. Journal of Cleaner Production, 137, 1158-1169. doi: 10.1016/j.jclepro.2016.07.195
  • Schulz, C., Hjaltadóttir, R.E., Hild, P., 2019. Practising circles: Studying institutional change and circular economy practices. Journal of Cleaner Production, 237, 117749. doi.org/10.1016/j.jclepro.2019.117749
  • Schwab, O., Zaboli, O., Rechberger, H. 2016. A Data Characterization Framework for Material Flow Analysis. Journal of Industrial Ecology, 21 (1) 16-25. doi: 10.1111/jiec.12399
  • Thomsen. M. and Zhang, X., 2020, 'Life Cycle Assessment of Macroalgal Eco-industrial Systems', in H. Dominguez, S. Krann (eds.), Sustainable Seaweed Technologies, Elsevier, Cambridge, Pending Publication
  • Tukker, A., Bulavskaya, T., Giljum, S., de Koning, A., Lutter, S., Simas, M., Stadler, K., Wood, R. 2016. Environmental and resource footprints in a global context: Europe’s structural deficit in resource endowments. Global Environmental Change, 40, 171–181. doi: 10.1016/j.gloenvcha.2016.07.002.
  • Weidema, B., Pizzol, M., Schmidt, J., Thoma, G. 2018. Attributional or consequential Life Cycle Assessment: A matter of social responsibility. Journal of Cleaner production, 174, 305-314. doi: 10.1016/j.jclepro.2017.10.340
  • Zimek, M., Schober, A., Mair, C., Baumgartner, R., Stern, T., Füllsack, M. 2019. The Third Wave of LCA as the “Decade of Consolidation”. Sustainability, 11,3283. doi.org/10.3390/su11123283
  • Xue, L., Liu, G., Parfitt, J., Liu, X., Van Herpen, E., Stenmarck, Å., O’Connor, C., Östergren, K., Cheng, S. 2017. Missing Food, Missing Data? A Critical Review of Global Food Losses and Food Waste Data. Environ. Sci. Technol., 51, 6618–6633. doi.org/10.1021/acs.est.7b00401

Course homepage:

Course assessment:
Final individual assignment. Evaluation: passed/not passed

Department of Environmental Science (Course responsible: Marianne Thomsen)

Special comments on this course:
The course is offered as an online course free of cost.

22-26 June 2020, online teaching from 9 am to 5 pm each day

Online course

Deadline for registration is 1 June 2020.

For registration, please send an email to:

17873 / i43